Answer on Question #50225, Physics, Mechanics | Kinematics | Dynamics

Find the radial and transverse components of acceleration of a particle moving along the circle $x^2 + y^2 = a^2$ with a constant velocity c.

Solution:

Given that

$$\frac{d\theta}{dt} = c$$

Differentiate w.r.t "t" we get

$$\frac{d^2\theta}{dt^2} = 0$$

Also given that

$$x^2 + y^2 = a^2$$

First we change this into polar form by putting $x = r \cos \theta$ and $y = r \sin \theta$

$$r^{2} \cos^{2} \theta + r^{2} \sin^{2} \theta = a^{2}$$

$$\Rightarrow r^{2} (\cos^{2} \theta + \sin^{2} \theta) = a^{2}$$

$$\Rightarrow r^{2} = a^{2}$$

$$\Rightarrow r = a$$

$$\Rightarrow \frac{dr}{dt} = 0 \qquad => \frac{d^{2}r}{dt^{2}} = 0$$

Radial component of acceleration = $a_r = \frac{d^2r}{dt^2} - r(\frac{d\theta}{dt})^2 = 0 - ac^2 = -ac^2$

Transverse component of acceleration = $a_{\theta} = 2 \frac{dr}{dt} \left(\frac{d\theta}{dt} \right) + r \frac{d^2\theta}{dt^2} = 0$

http://www.AssignmentExpert.com/