Answer on Question \#50202 - Physics - Other

a policeman on duty detects a drop of 10% in pitch of the horn of a moving car as it crosses him. If the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$. calculate the speed of the car...

Solution:

When a car is approaching the stationary policeman with a velocity v_{s}, then the apparent frequency of the car

$$
\begin{equation*}
f^{\prime}=f\left(\frac{v}{v-v_{s}}\right) \tag{1}
\end{equation*}
$$

When the car has crossed the policeman it moves away the stationary policeman, hence, v_{s} is negative. If $f^{\prime \prime}$ is the new apparent frequency of the car,

$$
\begin{equation*}
f^{\prime \prime}=f\left(\frac{v}{v+v_{s}}\right) \tag{2}
\end{equation*}
$$

Dividing equation (1) by (2), we get

$$
\begin{equation*}
\frac{f^{\prime}}{f^{\prime \prime}}=\frac{v+v_{s}}{v-v_{s}} \tag{3}
\end{equation*}
$$

Now as the drop of pitch of the horn received by the policeman is 10%, that is

$$
\frac{f^{\prime}}{f^{\prime \prime}}=\frac{100}{90}
$$

therefore from equation (3), we have

$$
\begin{gathered}
\frac{100}{90}=\frac{10}{9}=\frac{v+v_{s}}{v-v_{s}}=\frac{330+v_{s}}{330-v_{s}} \\
3300-10 v_{s}=2970+9 v_{s} \\
330=19 v_{s} \\
v_{s}=17.3 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

Answer: speed of the car is equal to $17.3 \frac{\mathrm{~m}}{\mathrm{~s}}$

