Answer on Question \#50146, Physics, Mechanics | Kinematics | Dynamics

A wooden cube is floating in water with 2 cm of it above the water level. As 100 g mass is placed on its surface, the cube goes down by 1 cm . Determine the mass of the cube.

1) Archimedes force acting upwards and weight cube - operates down

$$
\begin{gathered}
m_{1} g=\rho g V_{1} \\
h_{1}=2 \mathrm{~cm} \\
V_{1}=(x-2) x^{2} \\
m_{1}=\rho(x-2) x^{2}
\end{gathered}
$$

2) If 100 g mass is placed on its surface, weight $=\mathrm{m}_{2}+100$

$$
\begin{gathered}
\left(m_{2}+100\right) g=\rho g V_{2} \\
V_{2}=x^{3} \\
m_{2}+100=\rho x^{3}
\end{gathered}
$$

3) $m_{1}=m_{2}$ (in the first case and the second weight blocks were the same)

$$
\begin{gathered}
m_{1}=m_{2} \\
\rho(x-2) x^{2}+100=\rho x^{3} \\
2 \rho x^{2}=100 \\
\rho=1 \frac{g}{s m^{3}} \\
x=\sqrt{50}
\end{gathered}
$$

$$
m=\rho(x-2) x^{2}=50(\sqrt{50}-2)=253.6 g
$$

Answer: $m=253.6 \mathrm{~g}$

