

## Answer on Question #50141, Physics, Mechanics | Kinematics | Dynamics

It takes 3s for a sound wave to travel to a point 1km above the water surface from its source which is kept under the water at a depth of  $h$  m. Determine the value of  $h$ , if it is given that velocity of sound in air is  $340 \text{ ms}^{-1}$  and in water is  $1420 \text{ ms}^{-1}$ .

### Solution:

The time of travel is

$$t = t_1 + t_2 = 3 \text{ s}$$

where  $t_1$  and  $t_2$  are times of travel in water and air, respectively.

$$t_1 = h/v_{water}$$
$$t_2 = \frac{d}{v_{air}} = \frac{1000 \text{ m}}{340 \text{ m/s}}$$

Thus,

$$\frac{h}{v_{water}} + \frac{d}{v_{air}} = t$$

Hence,

$$h = v_{water} \left( t - \frac{d}{v_{air}} \right) = 1420 * \left( 3 - \frac{1000}{340} \right) = \frac{1420}{17} = 83.5 \text{ m}$$

**Answer:**  $h = 83.5 \text{ m}$