

1. Dry air near sea level has the following composition by volume: N₂, 78.02 %; O₂, 20.94 %; Ar, 0.93%; and CO₂, 0.05 %. The atmospheric pressure is 1.00 atm. Calculate the partial pressure of each gas in atm. P_{N₂} = ? atm P_{O₂} = ? atm P_{Ar} = ? atm P_{CO₂} = ? atm

Solution:

We have:

$$P = 1 \text{ atm}; \quad k_{N_2} = 78.02\%; \quad k_{O_2} = 78.02\%; \quad k_{Ar} = 78.02\%; \quad k_{CO_2} = 78.02\%$$

Lets suppose, that we have ideal gases. So, according to Dalton's Law:

$$P = P_{N_2} + P_{O_2} + P_{Ar} + P_{CO_2} \quad (1)$$

Obviously,

$$k_i = \frac{P_i}{P} \quad (2)$$

where P_i is the pressure of certain gas, k_i - coefficient (proportion) of certain gas. Hence,

$$P_i = k_i \cdot P \quad (3)$$

For our gases, we have (Answer):

$$\begin{aligned} P_{N_2} &= 0,7802 \cdot 1 \text{ atm} = 0,7802 \text{ atm}; \quad P_{O_2} = 0,2094 \cdot 1 \text{ atm} = 0,2094 \text{ atm} \\ P_{Ar} &= 0,0093 \cdot 1 \text{ atm} = 0,0093 \text{ atm}; \quad P_{CO_2} = 0,0005 \cdot 1 \text{ atm} = 0,0005 \text{ atm} \end{aligned}$$