Answer on Question 50082, Physics, Mechanics - Kinematics Dynamics This question refers to: Laws of motion A rubber ball of mass 0.12 kg moving at a speed of $25 \mathrm{~m} / \mathrm{s}$ perpendicular to a smooth vertical wall, rebounds from the wall without loss of speed in an impact lasting 0.004 s Calculate the impact force. Give your answer in Newtons Tip: consider the change of direction of the velocity before and after impact in your calculation. The answer could be a negative value.
Solution
Let us first find change of velocity of ball. It easy to understand that it will be

$$
\Delta v=25+25=50 \mathrm{~m} / \mathrm{s}
$$

Now we can use formula for change of impulse

$$
m \Delta v=F \Delta t
$$

Hence, impact force is

$$
F=\frac{m \Delta v}{\Delta t}=\frac{0.12 \cdot 50}{0.004}=1.5 \cdot 10^{3} \mathrm{~N}
$$

