Answer on Question \#50081, Physics, Mechanics | Kinematics | Dynamics

This question refers to: Laws of motion
A rubber ball of mass 0.12 kg moving at a speed of $25 \mathrm{~m} / \mathrm{s}$ perpendicular to a smooth vertical wall, rebounds from the wall without loss of speed in an impact lasting 0.004 s

Calculate the change of momentum of the ball.
Give your answer in kg.m/s
Tip: consider the change of direction of the velocity before and after impact in your calculation. The answer could be a negative value.

Solution:

the ball's mass ($\mathrm{m}=0.12 \mathrm{~kg}$),
the ball's initial velocity ($v_{i}=25 \mathrm{~m} / \mathrm{s}$) towards the wall, and
the ball's final velocity ($v_{f}=25 \mathrm{~m} / \mathrm{s}$) away from the wall.

The momentum and velocity are vectors so we have to choose a direction as positive. Let us choose towards the wall as the positive direction.

We are asked to calculate the change in momentum of the ball,

$$
\Delta \vec{p}=m \vec{v}_{f}-m \vec{v}_{i}=m\left(\vec{v}_{f}-\vec{v}_{i}\right)=0.12(-25-25)=-6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Answer: $-6 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

