

Answer on Question 50065, Physics, Mechanics | Kinematics | Dynamics

Question:

If the speed of the vehicle increases by $2\frac{m}{s}$, its kinetic energy is doubled, then original speed of the vehicle is

- 1) $(\sqrt{2}+1)\frac{m}{s}$,
- 2) $2(\sqrt{2}-1)\frac{m}{s}$,
- 3) $2(\sqrt{2}+1)\frac{m}{s}$,
- 4) $\sqrt{2}(\sqrt{2}+1)\frac{m}{s}$.

Solution:

By the definition, kinetic energy of the vehicle is $KE_1 = \frac{1}{2}mv_1^2$. From the condition of the question we know, that kinetic energy of the vehicle is doubled, so $KE_2 = 2KE_1$. Therefore, we can write:

$$\frac{1}{2}mv_2^2 = 2 \cdot \frac{1}{2}mv_1^2.$$

Because the speed of the vehicle increases by $2\frac{m}{s}$, we can write:

$$(v_1 + 2)^2 = 2v_1^2.$$

Let's take the square root of both sides of equation:

$$v_1 + 2 = \sqrt{2}v_1.$$

Solving this equation for v_1 we obtain the original speed of the vehicle:

$$v_1 = \frac{2}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{2(\sqrt{2}+1)}{2-1} = 2(\sqrt{2}+1)\frac{m}{s}.$$

Answer:

- 3) $2(\sqrt{2}+1)\frac{m}{s}$.