Answer on Question 49997, Physics, Mechanics | Kinematics | Dynamics

Question:

A ball of mass 0.5kg moving horizontally with a velocity of 30 m/s strikes a vertical wall and rebounds horizontally with a velocity of 20 m/s. Calculate the impulse (Ft) exerted by the wall on the ball and the force acting if the time of contact of the ball is 0.045s.

Solution:

Let us find the impulse exerted by the wall on the ball. By the definition of the impulse:

$$\Delta p = p_1 - p_2 = m_b v_b - (-m_b v_b') = 0.5kg \cdot 30 \frac{m}{s} - \left(-0.5kg \cdot 20 \frac{m}{s}\right) = 25N \cdot s,$$

where m_b is the mass of the ball, v_b is the velocity of the ball before strike with the vertical wall, v_b' is the velocity of the ball after rebound from the wall and we choose it with sign minus as it directed opposite to the v_b .

In order to obtain the force acting on the ball we again use the definition of the impulse:

$$\overline{F}\Delta t = \Delta p ,$$

from this formula we can obtain \overline{F} :

$$\overline{F} = \frac{\Delta p}{\Delta t} = \frac{25N \cdot s}{0.045s} = 555.5N.$$

Answer:

- 1) $\Delta p = 25N \cdot s$.
- 2) $\overline{F} = 555.5N$.