Answer on Question 49997, Physics, Mechanics | Kinematics | Dynamics

Question:

A ball of mass 0.5 kg moving horizontally with a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a vertical wall and rebounds horizontally with a velocity of $20 \mathrm{~m} / \mathrm{s}$. Calculate the impulse (Ft) exerted by the wall on the ball and the force acting if the time of contact of the ball is 0.045 s .

Solution:

Let us find the impulse exerted by the wall on the ball. By the definition of the impulse:

$$
\Delta p=p_{1}-p_{2}=m_{b} v_{b}-\left(-m_{b} v_{b}^{\prime}\right)=0.5 \mathrm{~kg} \cdot 30 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(-0.5 \mathrm{~kg} \cdot 20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)=25 \mathrm{~N} \cdot \mathrm{~s},
$$

where m_{b} is the mass of the ball, v_{b} is the velocity of the ball before strike with the vertical wall, v_{b}^{\prime} is the velocity of the ball after rebound from the wall and we choose it with sign minus as it directed opposite to the v_{b}.

In order to obtain the force acting on the ball we again use the definition of the impulse:

$$
\bar{F} \Delta t=\Delta p,
$$

from this formula we can obtain \bar{F} :

$$
\bar{F}=\frac{\Delta p}{\Delta t}=\frac{25 \mathrm{~N} \cdot \mathrm{~s}}{0.045 \mathrm{~s}}=555.5 \mathrm{~N} .
$$

Answer:

1) $\Delta p=25 \mathrm{~N} \cdot \mathrm{~s}$.
2) $\bar{F}=555.5 \mathrm{~N}$.
