Answer on Question 49948, Physics, Mechanics - Kinematics Dynamics A projectile is fired from ground level with a velocity of $500 \mathrm{~m} / \mathrm{s}$ at 30 to the horizontal. Calculate its horizontal range, the greatest height it reaches, and the time taken to rise to that height.
Solution
Vertical initial speed is

$$
v_{y 0}=v_{0} \sin \alpha=500 \cdot \sin 30^{\circ}=250 \mathrm{~m} / \mathrm{s}
$$

Time it takes particle to reach highest point can be found from equation for velocity

$$
v_{y}=v_{y 0}-g t
$$

At that point velocity is zero, hence

$$
t_{h}=\frac{v_{y 0}}{g}=\frac{500}{9.8} \approx 25.5 \mathrm{~s}
$$

The height itself is equal to

$$
h=\frac{v_{y 0}^{2}}{2 g} \approx 3188.9 \mathrm{~m}
$$

Now we can find horizontal distance. It is equal to twice the time t_{h} multiplied by horizontal velocity

$$
l=2 v_{x 0} t_{h}=2 v_{0} \cos \alpha \cdot t_{h}=2 \cdot 500 \cdot \sin 30^{\circ} \cdot 25.5 \approx 22083.6 \mathrm{~m}
$$

