Answer on Question\#49946 - Physics - Mechanics | Kinematics | Dynamics

1. $y\left(\frac{V_{y o}}{g}\right)=\frac{V_{y o}^{2}}{2 g}=5$
2. $x\left(\frac{2 V_{y 0}}{g}\right)=V_{x 0} \frac{2 V_{y 0}}{g}=40$
3. $V=10 \sqrt{5}$. Direction is reflection from the x-axis of initial velocity.

Solution

Equations of motion:

$$
\begin{gathered}
x(t)=V_{x 0} t+x_{0} \\
y(t)=-\frac{g t^{2}}{2}+V_{y 0} t+y_{0}
\end{gathered}
$$

Initial conditions:

$$
\begin{aligned}
x_{0} & =0 \\
y_{0} & =0 \\
V_{x 0} & =20 \\
V_{y 0} & =10
\end{aligned}
$$

Thus,

$$
\begin{gathered}
x(t)=V_{x 0} t \\
y(t)=-\frac{g t^{2}}{2}+V_{y 0} t
\end{gathered}
$$

1) the maximum height of the particle

It's value of $y(t)$ at time, when $\frac{d y(t)}{d t}=0$.

$$
\begin{gathered}
\frac{d y(y)}{d t}=-g t+V_{y 0}=0 \\
t=\frac{V_{y 0}}{g} \\
y\left(\frac{V_{y o}}{g}\right)=-\frac{g\left(\frac{V_{y o}}{g}\right)^{2}}{2}+V_{y 0}\left(\frac{V_{y o}}{g}\right)=\frac{V_{y o}^{2}}{2 g}
\end{gathered}
$$

Substitute $V_{y o}=10 ; \quad g=10$.

$$
y\left(\frac{V_{y o}}{g}\right)=y(1)=\frac{10^{2}}{2 * 10}=5
$$

2) the horizontal distance from the point of projection when it returns to the ground.
"Returns to ground" $\equiv y(t)=0, t \neq 0$.

$$
\begin{gathered}
y(t)=-\frac{g t^{2}}{2}+V_{y 0} t=t\left(-\frac{g t}{2}+V_{y 0}\right)=0 \\
t=\frac{2 V_{y 0}}{g} \\
x\left(\frac{2 V_{y 0}}{g}\right)=V_{x 0} \frac{2 V_{y 0}}{g}
\end{gathered}
$$

Substitute $V_{x 0}=20 ; \quad V_{y 0}=10 ; g=10$.

$$
x\left(\frac{2 V_{y 0}}{g}\right)=x(2)=20 * 2=40
$$

3) the magnitude and direction of its velocity on landing.

$$
\begin{gathered}
\frac{d y}{d t}\left(\frac{2 V_{y 0}}{g}\right)=-g\left(\frac{2 V_{y 0}}{g}\right)+V_{y 0}=-V_{y 0} \\
\frac{d x}{d t}\left(\frac{2 V_{y 0}}{g}\right)=V_{x 0}
\end{gathered}
$$

Hence, magnitude still the same

$$
V=\sqrt{V_{x 0}^{2}+V_{y o}^{2}}=\sqrt{20^{2}+10^{2}}=\sqrt{400+100}=\sqrt{500}=10 \sqrt{5}
$$

Direction is reflection from the x -axis of initial velocity.

