Answer on Question \#49944 - Physics - Mechanics | Kinematics | Dynamics

An object is dropped from a helicopter which is moving horizontally at a constant velocity of $45 \mathrm{~m} / \mathrm{s} 180 \mathrm{~m}$ above the ground. Find the time taken for the object to reach the ground.

Solution:

$h=180 m$ - height of the helicopter;
$V=45 \frac{\mathrm{~m}}{\mathrm{~s}}$ velocity of the helicopter;

Equation of motion for the object along Y - axis:
$y: h=\frac{g t^{2}}{2}$
$t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \cdot 180 m}{9.8 \frac{m}{s^{2}}}}=6 \mathrm{~s}$
Answer: time taken for the object to reach the ground is equal to 6 s .

