## Answer on Question 49942, Physics, Mechanics | Kinematics | Dynamics

## Question:

A pebble thrown from the top of $\alpha$ cliff at a speed of $10 \mathrm{~m} / \mathrm{s}$ and at $30^{\circ}$ above the horizontal. It hits the sea below the cliff 6 s later. Find,

1) The height of the cliff
2) The distance from the base of the cliff at which the pebble falls into the sea.

## Solution:

1) Let us write the projections of the initial speed of the pebble on axis $x$ and $y$ :

$$
\begin{aligned}
& v_{0 x}=v_{0} \cos 30^{\circ}=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.866=8.66 \frac{\mathrm{~m}}{\mathrm{~s}}, \\
& v_{0 y}=v_{0} \sin 30^{\circ}=10 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 0.5=5 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

Let us obtain the height of the cliff (we choose the axis $y$ upward from the base of the cliff):

$$
y=h=v_{0 y} t-\frac{1}{2} g t^{2}=5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 6 s-0.5 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(6 \mathrm{~s})^{2}=-146.4 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Because we taken the positive axis $y$ upward we obtain the height of the cliff with sign minus. So, the correct answer is $h=146.4 \mathrm{~m}$.
2) Let us obtain the distance from the base of the cliff at which the pebble falls into the sea:

$$
x=v_{0 x} t=8.66 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 6 \mathrm{~s}=52 \mathrm{~m} .
$$

## Answer:

1) $h=146.4 \mathrm{~m}$.
2) $x=52 \mathrm{~m}$.
