Answer on Question \#49940-Physics-Mechanics-Kinematics-Dynamics

A particle is projected with a speed of $25 \mathrm{~m} / \mathrm{s}$ at 30° above the horizontal. Find the time taken to reach the highest point of the trajectory.

Find the magnitude and direction of the velocity after 2 s .

Solution

The time taken to reach the highest point of the trajectory is the half of time of flight of projectile:

$$
t=\frac{1}{2} t_{f l i g h t}=\frac{1}{2} \frac{2 v_{0} \sin \theta}{g}=\frac{v_{0} \sin \theta}{g}=\frac{25 \frac{\mathrm{~m}}{\mathrm{~s}} \sin 30^{\circ}}{10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}=1.25 \mathrm{~s}
$$

The horizontal component of the velocity of the object remains unchanged throughout the motion:

$$
v_{x}=v_{0} \cos \theta=25 \frac{\mathrm{~m}}{\mathrm{~s}} \cos 30^{\circ} .
$$

The vertical component of the velocity after 2 s is

$$
v_{y}=v_{0} \sin \theta-g t=25 \frac{\mathrm{~m}}{\mathrm{~s}} \sin 30^{\circ}-10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2 \mathrm{~s}=-7.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The magnitude of the velocity after 2 s is

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{\left(25 \frac{\mathrm{~m}}{\mathrm{~s}} \cos 30^{\circ}\right)^{2}+\left(-7.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=23 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The angle above the horizontal is

$$
\alpha=\tan ^{-1}\left(\frac{v_{y}}{v_{x}}\right)=\tan ^{-1}\left(\frac{-7.5 \frac{\mathrm{~m}}{\mathrm{~s}}}{25 \frac{\mathrm{~m}}{\mathrm{~s}} \cos 30^{\circ}}\right)=-19^{\circ} .
$$

The velocity after 2 s is $23 \frac{\mathrm{~m}}{\mathrm{~s}}$ at 19° below the horizontal.

