Answer on Question \#49881- Physics - Electric Circuits

Question:

In the figure below, $\mathrm{R} 1=\mathrm{R} 2=5.00$ and $\mathrm{R} 3=1.50$. Find the equivalent resistance between points D and E. (Hint: Imagine that a battery is connected across those points.)

Fig. 1

Solution:

The resistors R_{1} and R_{2} are connected in parallel (see Fig.1). So, we can replace these two resistors with equivalent resistance $R_{12}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)$. The resistors R_{12} and R_{3} are connected in series. We also can replace these two resistors with equivalent resistance $R=R_{12}+R_{3}=R_{1} R_{2} /\left(R_{1}+R_{2}\right)+R_{3}$. In this case the equivalent resistance between points D and $\mathrm{E} R=R_{1} R_{2} /\left(R_{1}+R_{2}\right)+R_{3}=5 \cdot 5 /(5+5)+1.5=2.5+1.5=4 \Omega$

Answer: The equivalent resistance between points D and E is $R=R_{1} R_{2} /\left(R_{1}+R_{2}\right)+R_{3}=4 \Omega$.

http://www.AssignmentExpert.com/

