Answer on Question 49854, Physics, Mechanics | Kinematics | Dynamics

Question:

A ball of mass 1 g is subjected for millisecond to a force of $10^{-3} \mathrm{~N}$. How much does the velocity change?

Solution:

By the definition of the impulse we have:

$$
\bar{F} \Delta t=m \Delta v .
$$

From this formula we can obtain the velocity change:

$$
\Delta v=\frac{\bar{F} \Delta t}{m}=\frac{10^{-3} \mathrm{~N} \cdot 10^{-3} \mathrm{~s}}{10^{-3} \mathrm{~kg}}=10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

$\Delta v=10^{-3} \frac{\mathrm{~m}}{\mathrm{~s}}$.

