Answer on Question 49843, Physics, Mechanics | Kinematics | Dynamics

Question:

What would be the length of the day if the Earth rotated so fast that object at equator had no weight? Take the radius of the earth as 6400 km .

Solution:

Let's write the forces that acting on the object at the equator:

$$
N-m g=-\frac{m v^{2}}{R_{E}} .
$$

An object will have no weight when the gravitational force of Earth will be compensated by the centripetal force. Thus, $N=0$ and we obtain:

$$
m g=\frac{m v^{2}}{R_{E}} .
$$

From this formula we can obtain the speed of the object:

$$
v=\sqrt{g R_{E}}=\sqrt{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 6.4 \cdot 10^{6} \mathrm{~m}}=7.92 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

So, the time will be:

$$
t=\frac{s}{v}=\frac{2 \pi R_{E}}{v}=\frac{2 \cdot 3.14 \cdot 6.4 \cdot 10^{6} \mathrm{~m}}{7.92 \cdot 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}}=5075 \mathrm{~s}=1.41 \mathrm{hours} .
$$

Answer:

The length of the day will be 1.41 hours.

