Answer on Question \#49832- Physics-Mechanics-Kinematics-Dynamics

A weightless rod of length 21 carries two equal masses ' m ', one tied at lower end A and the other at the middle of the rod at B. The rod can rotates in vertical plane about a fixed axis passing though C. The rod is released from rest in horizontal position. The speed of mass B at the instant, rod become vertical is
(1) square($3 \mathrm{gl} / 5$)
(2) square($4 \mathrm{gl} / 5$)
(3) square($6 \mathrm{gl} / 5$)
(4) square($7 \mathrm{gl} / 5$)

Solution

According to the conservation of energy law:

$$
P_{i}=K_{f} \rightarrow m g l+m g(2 l)=\frac{m v_{B}^{2}}{2}+\frac{m v_{A}^{2}}{2} .
$$

The road rotates at some angular speed, when it became vertical:

$$
\omega=\frac{v_{B}}{l}=\frac{v_{A}}{2 l} \rightarrow v_{A}=2 v_{B} .
$$

Thus,

$$
3 m g l=\frac{m v_{B}^{2}}{2}+\frac{m\left(2 v_{B}\right)^{2}}{2} \rightarrow v_{B}=\sqrt{\frac{6 g l}{5}}
$$

Answer: (3) $\sqrt{\frac{6 g l}{5}}$.

