Answer on Question \#49808-Physics-Mechanics-Kinematics-Dynamics

A person wants to find the gravity on another planet. There is a 1 kg mass hanging from a thin wire with a length of $l=5 \mathrm{~m}$. By plucking the wire they can tell that the resulting wave takes $t=0.5 \mathrm{~s}$ to travel the length. The wire has a mass of $M=100 \mathrm{~g}=0.1 \mathrm{~kg}$. What is the gravity?

Solution

The speed of the wave is given by the formula

$$
v=\sqrt{\frac{T}{\mu}}
$$

where T is the tension and equal to the gravitational force on the weight $M(T=W=M g), \mu=\frac{1 \mathrm{~kg}}{5 \mathrm{~m}}=$ $0.2 \frac{\mathrm{~kg}}{\mathrm{~m}}$.

Thus

$$
v=\frac{l}{t}=\sqrt{\frac{M g}{\mu}}
$$

The acceleration of the gravity is

$$
g=\frac{\mu}{M}\left(\frac{l}{t}\right)^{2}=\frac{0.2}{0.1}\left(\frac{5}{0.5}\right)^{2}=500 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer: $500 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

