Answer on Question \#49805-Physics-Mechanics-Kinematics-Dynamics

A simple pendulum has an oscillation period of 1.90 s , and a mass of 150 g , the mass of the string is $2 \times 10^{\wedge}$ 4 kg which is distributed uniformly. If it is hanging vertically and its string is plucked, find the speed of the transverse wave.

Solution

The speed of a transverse wave on a string is given by

$$
v=\sqrt{\frac{T}{\mu}}
$$

where T is tension and μ is its mass per unit length.

The period of simple pendulum is

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

So, the length of string is

$$
l=g\left(\frac{T}{2 \pi}\right)^{2}
$$

The tension is

$$
\begin{gathered}
T=(M+m) g . \\
\mu=\frac{m}{l}=\frac{m}{g\left(\frac{T}{2 \pi}\right)^{2}}=\frac{m}{g} \frac{1}{\left(\frac{T}{2 \pi}\right)^{2}}
\end{gathered}
$$

The speed of a transverse wave on a string is

$$
v=\sqrt{\frac{(M+m) g}{m} \cdot g\left(\frac{T}{2 \pi}\right)^{2}}=\frac{g T}{2 \pi} \sqrt{1+\frac{M}{m}}=\frac{9.8 \cdot 1.9}{2 \pi} \sqrt{1+\frac{150 \cdot 10^{-3}}{2 \cdot 10^{-4}}}=81.2 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: 81. $2 \frac{\mathrm{~m}}{\mathrm{~s}}$.

