Question:

There is a pendulum with a length of 5 m and a mass on the end of 120 kg , the gravity is $10 \mathrm{~m} / \mathrm{s} 2$. Can the pendulum reach one side to the other in three seconds?

Solution:

Fig. 1
If deviation from the equilibrium position small $(\theta \ll 1)$, the period of the motion, the time for a complete oscillation is T given by Eq. (1) (see Fig. 1).

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{L}{g}} \tag{1}
\end{equation*}
$$

where g is acceleration due to gravity, L is the length of the pendulum.
The time needed for pendulum to reach from one side to the other is given by Eq.(2).

$$
\begin{equation*}
t=T / 2=\pi \sqrt{\frac{L}{g}}=3.14 \sqrt{\frac{5 m}{10 m / s^{2}}}=2.22 \mathrm{~s} \tag{2}
\end{equation*}
$$

$t=2.22 s<3 s$

Answer:

The pendulum can reach from one side to the other in three seconds.

