Answer on Question \#49803-Physics-Mechanics-Kinematics-Dynamics

A mass of $m=2.10 \mathrm{~kg}$ is attached to an oscillating spring, and the period of oscillation is $T=1.50 \mathrm{~s}$. Find the spring constant, and if the total energy is $E=4.55 \mathrm{~J}$ find the amplitude of the oscillations.

Solution

The period of oscillation is

$$
T=2 \pi \sqrt{\frac{m}{k}},
$$

where k is the spring constant.
So, the spring constant is

$$
k=m\left(\frac{T}{2 \pi}\right)^{-2}=2.10\left(\frac{1.50}{2 \pi}\right)^{-2}=36.8 \frac{\mathrm{~N}}{\mathrm{~m}} .
$$

The total energy is

$$
E=\frac{k A^{2}}{2},
$$

where A is the amplitude of the oscillations.
Thus,

$$
A=\sqrt{\frac{2 E}{k}}=\sqrt{\frac{2 \cdot 4.55}{36.8}}=0.5 \mathrm{~m} .
$$

