Answer on Question 49758, Physics, Mechanics | Kinematics | Dynamics

Question:

A 100 kg scientist finds that the acceleration of gravity at the north and south pole is measured to be $9.832 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ and only $9.780 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ at the equator. If the mass of the Earth is $5.98 \cdot 10^{24} \mathrm{~kg}$, determine the radius of the Earth at the equator and at the poles.

Solution:

By the definition of the acceleretation of gravity we have:

$$
g=G \frac{M_{E}}{R^{2}},
$$

where ${ }^{g}$ is the acceleration of gravity, $G=6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}}$ is the gravitational constant, $M_{E}=5.98 \cdot 10^{24} \mathrm{~kg}$ is the mass of the Earth and R is the radius of the Earth.

From this formula we can find the radius of the Earth at the equator and at the poles:

$$
\begin{aligned}
& R_{e q}=\sqrt{G \frac{M_{E}}{g_{e q}}}=\sqrt{\frac{6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}} \cdot 5.98 \cdot 10^{24} \mathrm{~kg}}{9.780 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}=6.386223 \cdot 10^{6} \mathrm{~m} . \\
& R_{\text {pole }}=\sqrt{G \frac{M_{E}}{g_{\text {pole }}}}=\sqrt{\frac{6.67 \cdot 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \cdot 5.98 \cdot 10^{24} \mathrm{~kg}}{9.832 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}=6.369312 \cdot 10^{6} \mathrm{~m} .
\end{aligned}
$$

Answer:

a) $R_{e q}=6.386223 \cdot 10^{6} \mathrm{~m}$.
b) $R_{\text {pole }}=6.369312 \cdot 10^{6} \mathrm{~m}$.

