Answer on Question\#49746-Physics - Mechanics - Kinematics - Dynamics

A spring with a mass of 4 kg has natural length 0.5 m . A force of 25.6 N is required to maintain it stretched to a length of 0.7 m . If the spring is stretched to a length of 0.7 m and then released with initial velocity 0 , find the position of the mass at any time.

Solution:

Since the force of 25.6 N is required to maintain the spring stretched by the length of 0.2 m , the stiffness of the string has the following value

$$
k=\frac{25.6 \mathrm{~N}}{0.2 \mathrm{~m}}=128 \frac{\mathrm{~N}}{\mathrm{~m}}
$$

According to the 2 Newton's law the equation of motion of the mass (under the restoring force) can be written as follows

$$
M \ddot{x}=-k(x-0,5 m)
$$

where $M=4 \mathrm{~kg}$ and x is the position of the mass. The solution of this equation is

$$
\begin{equation*}
x=0,5 \mathrm{~m}+A \sin \frac{k}{M} t+B \cos \frac{k}{M} t \tag{1}
\end{equation*}
$$

where A and B are some constants. We can determine them from the initial conditions, which are

$$
x(0)=0.7 \mathrm{~m}, \quad \dot{x}(0)=0 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Using the first condition we obtain

$$
0,7 \mathrm{~m}=0,5 \mathrm{~m}+B
$$

It gives us the value of B :

$$
B=0,2 \mathrm{~m}
$$

Taking the derivative of (1) we obtain

$$
\dot{x}=A \frac{k}{M} \cos \frac{k}{M} t-B \frac{k}{M} \sin \frac{k}{M} t
$$

Using second condition we obtain

$$
\dot{x}(0)=A \frac{k}{M}=0
$$

It gives us the value of A :

$$
A=0
$$

Therefore, the position of the mass at any time is given by

$$
x=0,5 \mathrm{~m}+0,2 \mathrm{~m} \cdot \cos \frac{128 \frac{\mathrm{~N}}{\mathrm{~m}}}{4 \mathrm{~kg}} t=0,5 \mathrm{~m}+0,2 \mathrm{~m} \cdot \cos \left(32 \mathrm{~s}^{-1} \cdot t\right)
$$

Answer: $x=0,5 \mathrm{~m}+0,2 \mathrm{~m} \cdot \cos \left(32 \mathrm{~s}^{-1} \cdot t\right)$.

