Answer on Question 49738, Physics, Mechanics | Kinematics | Dynamics

Question:

A bird is flying due east. Its distance from a tall building is giving by $x(t)=28 m+\left(12.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t-\left(0.0450 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t^{3}$. What is the instantaneous velocity of the bird when $t=8 s$?

Solution:

From the definition of the instantaneous velocity we have:

$$
v(t)=\frac{d}{d t} x(t)=\frac{d}{d t}\left(28 m+\left(12.4 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t-\left(0.0450 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) t^{3}\right)=12.4 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(3 \cdot 0.0450 \frac{\mathrm{~m}}{\mathrm{~s}^{3}}\right) \cdot t^{2} .
$$

When $t=8 s$ the instantaneous velocity of the bird will be:

$$
v(8)=12.4 \frac{\mathrm{~m}}{\mathrm{~s}}-3 \cdot 0.0450 \frac{\mathrm{~m}}{\mathrm{~s}^{3}} \cdot(8 \mathrm{~s})^{2}=12.4 \frac{\mathrm{~m}}{\mathrm{~s}}-8.64 \frac{\mathrm{~m}}{\mathrm{~s}}=3.76 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

The instantaneous velocity of the bird when $t=8 s$ is $3.76 \frac{\mathrm{~m}}{\mathrm{~s}}$.

