Answer on Question \#49706, Physics, Mechanics | Kinematics | Dynamics

A simple pendulum consisting of a small heavy bob attached to a light string of length 40 cm is released from rest with the string at 60° to the downward vertical. Find the speed of the pendulum bob as it passes through its lowest point.

Solution:

The total mechanical energy (ME) of a body, is the sum of its kinetic energy (KE) and its gravitational potential energy (PE):

$$
\mathrm{ME}=\mathrm{KE}+\mathrm{PE}=\text { constant }
$$

Thus,

$$
\begin{gathered}
K E_{\text {final }}=P E_{\text {initial }} \\
\frac{m v^{2}}{2}=m g h \\
v=\sqrt{2 g h} \\
h=L-L \cos \left(\theta_{0}\right)
\end{gathered}
$$

Hence,

$$
v=\sqrt{2 g L\left(1-\cos \left(\theta_{0}\right)\right)}=\sqrt{2 * 9.8 * 0.4\left(1-\cos \left(60^{\circ}\right)\right)}=1.98 \mathrm{~m} / \mathrm{s}
$$

Answer: $v=1.98 \mathrm{~m} / \mathrm{s}$

