Answer on Question 49698, Physics, Mechanics | Kinematics | Dynamics

Question:

The dinosaur Tyrannosaurus rex is thought to have had a mass of about 7000kg.
a) treat the dinosaur as a particle and estimate its kinetic energy at a walking speed of $4.0 \mathrm{~km} / \mathrm{h}$
b) with what speed would a 70 kg person have to move to have the same kinetic energy as a walking T-rex?

Solution:

a) By the definition of the kinetic energy we have:

$$
K . E .=\frac{1}{2} m v^{2}=0.5 \cdot 7000 \mathrm{~kg} \cdot\left(4 \cdot \frac{1000 \mathrm{~m}}{3600 \mathrm{~s}}\right)^{2}=4320 \mathrm{~J} .
$$

b) From the formula for kinetic energy we can obtain the speed:

$$
v=\sqrt{\frac{2 K . E .}{m_{\text {person }}}}=\sqrt{\frac{2 \cdot 4320 \mathrm{~J}}{70 \mathrm{~kg}}}=11.1 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

a) $K . E .=4320 \mathrm{~J}$.
b) $v=11.1 \frac{\mathrm{~m}}{\mathrm{~s}}$.

