Answer on Question \#49688, Physics, Optics

A convex spherical refracting surface with radius R separates a medium having refractive index $5 / 2$ from air. An object is moved towards the surface from far away from the surface along the central axis, its image-
a) changes from real to virtual when it is at a distance R from the surface.
b) changes from virtual to real when it is at a distance R from the surface.
c) changes from real to virtual when it is at a distance $2 R / 3$ from the surface.
d) changes from virtual to real when it is at a distance $2 R / 3$ from the surface.

Solution:

$$
\mu_{1}=1, \quad \mu_{2}=\frac{5}{2}=2.5
$$

Formation of real image

$$
\begin{gathered}
O P=-u, P I=v \text { and } R=P C \\
\frac{\mu_{1}}{-u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}
\end{gathered}
$$

Formation of virtual image

$O P=-u, \quad P I=-v$ and $R=P C$

$$
\frac{\mu_{1}}{-u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}
$$

As the object distance is gradually reduced, the conjugate image point P gradually changes from real to virtual.

The image will be at $v=\infty$ when

$$
\begin{gathered}
\frac{1}{-u}+\frac{\mu_{2}}{\infty}=\frac{3}{2 R} \\
-u=\frac{2 R}{3}
\end{gathered}
$$

Answer: c) changes from real to virtual when it is at a distance $2 R / 3$ from the surface.

