Answer on Question \#49669-Physics-Mechanics-Kinematics-Dynamics

Two particles of masses $M=6 \mathrm{~kg}$ and $m=2 \mathrm{~kg}$ are conceded by a light inextensible string passing over a smooth pulley. The system is released from rest with the string taut. Find the speed of the particles when the heavier one has descended $h=2 m$.

Solution

The equations of motion for two particles are

$$
\left\{\begin{array}{l}
m a=T-m g \\
M a=M g-T
\end{array}\right.
$$

where T is a tension in the string, g is acceleration of gravity and a is acceleration of particles.

Thus,

$$
a=\frac{M-m}{M+m} g
$$

From the kinematics we know formula:

$$
v_{f}^{2}-v_{i}^{2}=2 a S
$$

where $v_{i}=0$ is initial speed of the particles, $v_{f}=v$ is final speed of the particles and $S=h=2 m$.
So,

$$
v=\sqrt{2 a h}=\sqrt{2 \frac{M-m}{M+m} g h}=\sqrt{2 \cdot \frac{6-2}{6+2} \cdot 10 \cdot 2}=4.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer: $4.5 \frac{\mathrm{~m}}{\mathrm{~s}}$.

