Answer on Question \#49632-Physics-Mechanics-Kinematics-Dynamics

A cannon ball has a range R on a horizontal plane. If h and h ' are the greatest heights in the two paths for which this is possible, then

$$
R=4 \sqrt{h h^{\prime}} .
$$

Solution

The two angles are complimentary.

$$
h=\frac{u^{2} \sin ^{2} \theta}{2 g} ; h^{\prime}=\frac{u^{2} \sin ^{2}(90-\theta)}{2 g}=\frac{u^{2} \cos ^{2} \theta}{2 g} .
$$

And

$$
R=\frac{u^{2} \sin 2 \theta}{g}=\frac{2 u^{2} \sin \theta \cos \theta}{g} .
$$

But

$$
\sin \theta=\sqrt{\frac{2 g h}{u^{2}}}, \cos \theta=\sqrt{\frac{2 g h^{\prime}}{u^{2}}} .
$$

Therefore

$$
R=\frac{2 u^{2}}{g} \sqrt{\frac{2 g h}{u^{2}}} \sqrt{\frac{2 g h^{\prime}}{u^{2}}}=4 \sqrt{h h^{\prime}} .
$$

