Answer on Question\#49631-Physics - Mechanics - Kinematics - Dynamics

The lap joint is fastened together using two bolts. Determine the required diameter of the bolts if the allowable shear stress for the bolts is $\tau=60 \mathrm{MPa}$ and the allowable bearing stress in the plates is $\sigma=110 \mathrm{MPa}$. Assume each bolt supports an equal portion of the load and the thickness of each plate is $t=20 \mathrm{~mm}$. Express the answer in millimeters.

Solution:

From the shearing of two bolts

$$
F=2 \cdot \tau \cdot A_{\text {bolt }}
$$

where $A_{\text {bolt }}=\frac{\pi d^{2}}{4}$ is a cross-section of the bolt.
Therefore

$$
\begin{equation*}
F=\tau \cdot \frac{\pi d^{2}}{2} \tag{1}
\end{equation*}
$$

From bearing of plate material

$$
F=2 \cdot \sigma \cdot A
$$

where $A=d \cdot t$ is a cross-section of the plate, which is born.

Therefore

$$
\begin{equation*}
F=2 \cdot \sigma \cdot d \cdot t \tag{2}
\end{equation*}
$$

Using equations (1) and (2) we obtain

$$
\tau \cdot \frac{\pi d^{2}}{2}=2 \cdot \sigma \cdot d \cdot t
$$

or, equivalently

$$
d=\frac{4}{\pi} \frac{\sigma}{\tau} t=\frac{4}{\pi} \frac{110 \mathrm{MPa}}{60 \mathrm{MPa}} 20 \mathrm{~mm}=47 \mathrm{~mm}
$$

Answer: $d=\frac{4}{\pi} \frac{\sigma}{\tau} t=47 \mathrm{~mm}$.

