Answer on Question \#49565, Physics, Mechanics | Kinematics | Dynamics

The mass of a planet is 4 times while its radius is 8 times that of the earth. If the weight of an object is 640 N on earth, what will be its weight on the planet?

Solution:

Newton's Law of Universal Gravitation states that there is a gravitational force between any two masses that is equal in magnitude for each mass, and is aligned to draw the two masses toward each other. The formula is:

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

where m_{1} and m_{2} are the two masses, G is the gravitational constant, and r is the distance between the two masses.

In our case:

$$
\begin{gathered}
F_{1}=G \frac{m_{1} m_{2}}{r^{2}}=640 \mathrm{~N} \\
F_{2}=G \frac{4 m_{1} m_{2}}{(8 r)^{2}}
\end{gathered}
$$

The ratio of forces is

$$
\frac{F_{1}}{F_{2}}=G \frac{m_{1} m_{2}}{r^{2}} \cdot \frac{64 r^{2}}{4 G m_{1} m_{2}}=\frac{64}{4}=16
$$

Thus,

$$
F_{2}=\frac{F_{1}}{16}=\frac{640}{16}=40 \mathrm{~N}
$$

Answer: 40 N

