Answer on Question\#49421-Physics - Mechanics - Kinematics - Dynamics

A body with mass $m=5 \mathrm{~kg}$ is acted upon by a force $\boldsymbol{F}=(-3 \boldsymbol{i}+4 \boldsymbol{j}) \mathrm{N}$. If its initial velocity at $t=0$ is $\boldsymbol{v}=(6 \boldsymbol{i}-12 \boldsymbol{j}) \frac{\mathrm{m}}{\mathrm{s}}$, the time at which it will just have a velocity along the y -axis is
(1) never
(2) 10 sec
(3) 2 sec
(4) 15 sec

Solution:

Let's consider the motion of the body along the x-axis. X-component of the force $F_{x}=-3 \mathrm{~N}$ provides the body with acceleration $a_{x}=\frac{F_{x}}{m}=-0.6 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. To find the t at which the body moves with zero speed along the x-axis we'll use the following equation

$$
v_{x}^{f}=v_{x}+a_{x} t
$$

where v_{x}^{f} is the final velocity, v_{x} is the initial velocity, a_{x} is the acceleration, and t is the time. Substituting $v_{x}^{f}=0$ and $v_{x}=6 \frac{\mathrm{~m}}{\mathrm{~s}}$ into this equation we obtain

$$
0=6-0.6 t \Rightarrow t=10 \mathrm{~s}
$$

So, the correct answer is (2).
Answer: (2).

