Answer on Question \#49419, Physics, Acoustics

Calculate the percent error made over one mile of distance by the 5 sec . rule for estimating the distance from a lighting strike if the temperature (a) $30^{\circ} \mathrm{C}$ (b) $10^{\circ} \mathrm{C}$

Solution:

The " 5 second rule" says that for every 5 seconds between seeing a lightning strike and hearing the associated sound, the lightning is 1 mile distant. We assume that there are 5 seconds between seeing the lightning and hearing the sound.
(a) At $30^{\circ} \mathrm{C}$, the speed of sound is $[331+0.60(30)] \mathrm{m} / \mathrm{s}=349 \mathrm{~m} / \mathrm{s}$.

The actual distance to the lightning is therefore

$$
d=v t=(349 m s)(5 s)=1745 m .
$$

A mile is 1610 m .

$$
\% \text { error }=\frac{1745-1610}{1745} * 100=7.7 \% \approx 8 \%
$$

(b) At $10^{\circ} \mathrm{C}$, the speed of sound is $[331+0.60(10)] \mathrm{m} / \mathrm{s}=337 \mathrm{~m} / \mathrm{s}$.

The actual distance to the lightning is therefore

$$
d=v t=(337 m s)(5 s)=1685 m .
$$

A mile is 1610 m .

$$
\% \text { error }=\frac{1685-1610}{1685} * 100=4.45 \% \approx 4.5 \%
$$

Answer: a) 8 \%; b) 4.5 \%.

