Answer on Question 49334, Physics, Mechanics | Kinematics | Dynamics

Question:

A fan blade is initially rotating at an angular speed of 48.6 rpm . It slows down and eventually comes to rest in a time of 32 seconds after turning through a total of 8.8 revolutions. Find the average angular velocity of the fan blade.

Solution:

By the definition of the average angular velocity:

$$
\bar{\omega}=\frac{\Delta \theta}{\Delta t},
$$

where $\bar{\omega}$ is the average angular velocity, $\Delta \theta$ is the angular displacement and Δt is the time. From this formula we obtain:

$$
\bar{\omega}=\frac{8.8 \mathrm{rev} \cdot\left(\frac{2 \pi}{\mathrm{rev}}\right)}{32 \mathrm{~s}}=1.73 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Answer:

Average angular velocity of the fan blade is $\bar{\omega}=1.73 \frac{\mathrm{rad}}{\mathrm{s}}$.

