Answer on Question\#49287-Physics - Other

A car needs a hydraulic jack. The car rests on a piston with a circular cross section where the radius of the circle is 0.5 m . A person has to apply a force of 16 N to the smaller piston which has a radius of 2 cm . What is the mass of the car?

Solution:

According to the principle of transmission of fluid-pressure the pressure under the smaller piston is equal to the pressure under the bigger piston. Since the pressure under the smaller piston is $P=\frac{F}{\pi r^{2}}\left(F=16 \mathrm{~N}\right.$ is the force applied by person, πr^{2} is the area of the smaller piston, where $r=2 \mathrm{~cm}$ is its radius), the weight of the car is

$$
M \cdot g=P \cdot \pi R^{2}
$$

where M is the mass of the car, $R=0.5 \mathrm{~m}$ is the radius of the bigger piston, g is gravitational acceleration. Hence we obtain (assuming that $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$)

$$
M=\frac{F}{g} \frac{R^{2}}{r^{2}}=1000 \mathrm{~kg}
$$

Answer: 1000 kg .

