1. A stationary object is released from a point P at a distance $3 R$ from the centre of the moon which has radius R and mass M . Which of the following gives the speed of the object on hitting the moon?
2. $(2 G M / 3 R)^{\wedge 1 / 2 ; ~}$
3. (4GM/3R)^1/2;
4. (GM/3R)^1/2;
5. $(\mathrm{GM} / \mathrm{R})^{\wedge} 1 / 2$.

Solution.

We must use the law of conservation and transformation of energy. The sum of the potential energy of an object and its kinetic energy remain constant:
$-G \frac{m M}{3 R}+\frac{m \cdot v_{0}{ }^{2}}{2}=-G \frac{m M}{R}+\frac{m \cdot v_{1}{ }^{2}}{2}$,
where m is the object mass, $v_{0}\left(v_{1}\right)$ is its initial (final) speed.
The object was stationary, so $v_{0}=0$.
Thus, we can find the speed of the object on hitting the moon.
$-G \frac{M}{3 R}=-G \frac{M}{R}+\frac{v_{1}{ }^{2}}{2}, \quad \frac{v_{1}{ }^{2}}{2}=\frac{2 G M}{3 R}, \quad v_{1}=2 \sqrt{\frac{G M}{3 R}}$.
Answer: 2)

