Answer on Question\#49245-Physics - Electromagnetism

A wire of length L is bend to form regular hexagon and current I is flowing through it then what is magnetic induction at center of hexagon?

Solution:

Fig. 1

Since the hexagon is regular each rib gives the same contribution to induction at the center of hexagon (point O in the Fig. 1). Let's find the induction generated by the rib $A D$. The distance $O C$ from the center of hexagon to the rib $A D$ is given by

$$
O C=\frac{A D \cdot \operatorname{ctg} \theta_{1}}{2}
$$

Whereas the $A D$ equals $L / 6$ and $\theta_{1}=\theta_{2}=\frac{\pi}{6}$ (the hexagon is regular) we finally obtain

$$
O C=\frac{L \cdot \operatorname{ctg} \frac{\pi}{6}}{12}=\frac{L}{4 \sqrt{3}}
$$

Fig. 2

The magnetic induction of the finite wire is given by

$$
B=\frac{\mu_{0}}{4 \pi} \frac{I}{R}\left(\sin \alpha_{2}+\sin \alpha_{1}\right)
$$

where I is the current, R is the distance to the wire, angles α_{1} and α_{2} are measured from the $K P$ (see Fig. 2). Using this equation we can obtain the induction generated by the rib of the hexagon:

$$
B_{A D}=\frac{\mu_{0}}{4 \pi} \frac{I}{O C}\left(\sin \theta_{2}+\sin \theta_{1}\right)=\frac{\sqrt{3}}{\pi} \frac{I}{L}
$$

Given that the induction B in the center of the hexagon is six times greater than the induction of the rib, we finally obtain

$$
B=6 \cdot B_{A D}=\frac{6 \sqrt{3}}{\pi} \frac{I}{L}
$$

Answer: $\frac{6 \sqrt{3}}{\pi} \frac{I}{L}$

