Answer on Question \#49238-Physics-Mechanics-Kinematics-Dynamics

A car of mass m starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude P. The instantaneous velocity of this car is proportional to
(1) $t^{2} P$
(2) $t^{\frac{1}{2}}$
(3) $t^{-\frac{1}{2}}$
(4) $\frac{t}{m^{\frac{1}{2}}}$

Solution

$$
\begin{gathered}
P=F v=\left(m \frac{d v}{d t}\right) v=m v \frac{d v}{d t} \\
\int P d t=\int m v d v \\
P t=\frac{m v^{2}}{2} \rightarrow v=\sqrt{\frac{2 P t}{m}} \\
\therefore v \propto t^{\frac{1}{2}}
\end{gathered}
$$

Answer: (2) $t^{\frac{1}{2}}$.

