Answer on Question 49199, Electromagnetism

Question:

A doorbell requires 12 volts to operate. A transformer is used to step down 120 volts. If the primary has 500 turns, how many turns should the secondary have?

Solution:

By the ideal transormer equation we have:

$$
\frac{V_{P}}{V_{S}}=\frac{N_{P}}{N_{S}},
$$

where V_{P} is the primary voltage on the ends of the primary winding, V_{S} is the secondary voltage on the ends of the secondary winding, N_{P} and N_{S} is the number of turns in the primary and secondary windings respectively. From this equation we can find the number of turns in the secondary winding:

$$
N_{S}=\frac{N_{P} V_{S}}{V_{P}}=\frac{500 \mathrm{turns} \cdot 12 \mathrm{~V}}{120 \mathrm{~V}}=50 \mathrm{turns} .
$$

Answer:

The secondary winding should have 50 turns.

