Answer on Question \#49190, Physics, Mechanics | Kinematics | Dynamics

A liter of water is used to cool some electronics. If 1000 J of heat is given off by the electronics, by what temperature does the water increase? One liter of water has a mass of 1 kg and a specific heat of $4.184 \mathrm{~J} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$.

Solution.

Relation between amount of heat and change of temperature of the body is the next:
$Q=c m \Delta T$
Where Q is amount of heat is transferred to the body; c is specific heat capacity, this is the property of the body (water in our case); m - mass of the body; $\Delta \mathrm{T}$ - temperature change of the body.

So:
$\Delta T=\frac{Q}{c m}$
Numerically:
$\Delta T=\frac{1000 \mathrm{~J}}{4.184 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}} \cdot 1000 \mathrm{~g}} \approx 0.24{ }^{\circ} \mathrm{C}$
Answer: $\Delta T=0.24^{\circ} \mathrm{C}$

