1. Air in a cylinder is compressed to one-tenth its original volume with no change in temperature. What is the change in its pressure?

$\eta_{1}=0.1$
$\eta_{2}-?$

Solution.

Let write the ideal gas law for the initial and final state of the gas:
$p_{1} V_{1}=\frac{m}{M} R T, \quad p_{2} V_{2}=\frac{m}{M} R T$,
where m and M are the mass and molar mass, correspondingly. The gas temperature T remains constant.

If we divide the first equation by the second one, the following equation will be obtained:

$$
\frac{p_{1} V_{1}}{p_{2} V_{2}}=1, \quad \text { or } \quad \frac{p_{2}}{p_{1}}=\frac{V_{1}}{V_{2}}
$$

According to the text, $\frac{V_{2}}{V_{1}}=1-\eta_{1}$. So, change in gas pressure is:
$\eta_{2}=\frac{p_{2}-p_{1}}{p_{1}}=\frac{p_{2}}{p_{1}}-1=\frac{1}{\frac{V_{2}}{V_{1}}}-1=\frac{1}{1-\eta_{1}}-1=\frac{\eta_{1}}{1-\eta_{1}}$.
$\eta_{2}=\frac{0.1}{1-0.1}=\frac{1}{9}$.
Answer: the pressure increases to $\frac{1}{9}$-th towards its original quantity
(the pressure increases at $\frac{10}{9}$ times).

