Answer on Question \#49184, Physics, Mechanics | Kinematics | Dynamics

A rectangular barge floats in freshwater. When a 400 kg block is loaded on the 5 m long by 2 m wide barge, the barge sinks a few centimeters deeper. How much deeper does the barge lower?

Solution.

Before:

Due to $1^{\text {st }}$ Newton's law:
$M g=F_{A 1}$

After:

Due to $1^{\text {st }}$ Newton's law:
$M g+m g=F_{A 2}$
By definition:
$F_{A}=\rho_{\text {water }} g V_{\text {under_water }}$
So:

$$
\left\{\begin{array}{c}
M g=\rho_{w} g S h \\
M g+m g=\rho_{w} g S(h+\Delta h)
\end{array}\right.
$$

So:
$M g+m g=\rho_{w} g S(h+\Delta h)=\rho_{w} g S h+\rho_{w} g S \Delta h=M g+\rho_{w} g S \Delta h$
$m g=\rho_{w} g S \Delta h$
$\Delta h=\frac{m}{\rho_{w} S}=\frac{m}{\rho_{w} \cdot a b}$
Where a is the width and b is the length of barge.
Numerically:
$\Delta h=\frac{400 \mathrm{~kg}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 5 \mathrm{~m} \cdot 2 \mathrm{~m}}=0.04 \mathrm{~m}=4 \mathrm{~cm}$
Answer: $\Delta h=4 \mathrm{~cm}$

