

Answer on Question #49182 – Physics – Mechanics | Kinematics | Dynamics

1. A ball is thrown at 22 m/s at 45 degrees to the horizontal. A 5 foot tall fence is located 100 meters away. Does the ball make it over the fence?

$$v_0 = 22 \text{ m/s}$$

$$\varphi = 45^\circ$$

$$h = 5 \text{ ft} = m$$

$$l = 100 \text{ m}$$

fly over?

$$\begin{cases} x = v_0 \cos \varphi \cdot t \\ y = v_0 \sin \varphi \cdot t - \frac{gt^2}{2} \end{cases}$$

Solution.

Let write the kinematic equations of a ball motion. Let introduce the coordinate system, so that X-axis is directed towards a ball motion and Y-axis is directed vertically upwards. If the center of coordinate system is in its initial position, then the ball's coordinates depend on time as:

The total time of a fly (without any obstacles) can be find from the equation $y = 0$:

$$v_0 \sin \varphi \cdot t - \frac{gt^2}{2} = 0, \quad t_1 = \frac{2v_0 \sin \varphi}{g} = \frac{2 \cdot 22 \cdot \sin 45^\circ}{9.8} \approx 3.17 \text{ (s)}.$$

The total distance in X-direction will be $x(t_1) = v_0 \cos \varphi \cdot t_1 = 22 \cdot \cos 45^\circ \cdot 3.17 = 49.3 \text{ (m)}$.

$x(t_1) < l = 100 \text{ m}$, so, the ball will drop before the fence.

Answer: the ball will not make the fence over.