Answer on Question \#49182 - Physics - Mechanics | Kinematics | Dynamics

1. A ball is thrown at $22 \mathrm{~m} / \mathrm{s}$ at 45 degrees to the horizontal. A 5 foot tall fence is located 100 meters away. Does the ball make it over the fence?
$v_{0}=22 \mathrm{~m} / \mathrm{s}$

Solution.

$\varphi=45^{\circ}$
$h=5 f t=m$
$l=100 \mathrm{~m}$
fly over?
$\left\{\begin{array}{l}x=v_{0} \cos \varphi \cdot t \\ y=v_{0} \sin \varphi \cdot t-\frac{g t^{2}}{2} .\end{array}\right.$
The total time of a fly (without any obstacles) can be find from the equation $y=0$:
$v_{0} \sin \varphi \cdot t-\frac{g t^{2}}{2}=0, \quad t_{1}=\frac{2 v_{0} \sin \varphi}{g}=\frac{2 \cdot 22 \cdot \sin 45^{\circ}}{9.8} \approx 3.17(\mathrm{~s})$.
The total distance in X-direction will be $x\left(t_{1}\right)=v_{0} \cos \varphi \cdot t_{1}=22 \cdot \cos 45^{\circ} \cdot 3.17=49.3(\mathrm{~m})$. $x\left(t_{1}\right)<l=100 \mathrm{~m}$, so, the ball will drop before the fence.
Answer: the ball will not make the fence over.

