Answer on Question \#49173, Physics, Mechanics | Kinematics | Dynamics

A boat begins on the best side of a river and heads straight east across the river with a speed of $1.9 \mathrm{Ft} / \mathrm{s}$ (relative to the water). The river water flows NORTH at the speed of $2 .{ }^{\wedge} \mathrm{Ft} / \mathrm{s}$ (relative to the shore). The resultant velocity of the boat (relative to the shore) is approximately \qquad Ft / s at \qquad degrees (-CCW from east)

Solution:

In our case,

$$
v_{B E}=\sqrt{v_{B W}^{2}+v_{W E}^{2}}=\sqrt{1.9^{2}+2^{2}}=2.76 \mathrm{ft} / \mathrm{s}
$$

The angle is

$$
\begin{gathered}
\tan \theta=\frac{v_{B W}}{v_{W E}}=\frac{1.9}{2}=0.95 \\
\theta=\tan ^{-1} 0.95=43.53^{\circ}
\end{gathered}
$$

Answer: $2.76 \mathrm{ft} / \mathrm{s} ; 43.53^{\circ}$.

