Answer on Question \#49168, Physics, Mechanics | Kinematics | Dynamics

A puck of mass 30.0 kg slides across rough ice, experiencing a frictional force of 0.20 N . If it was moving at $10.0 \mathrm{~km} / \mathrm{h}$ when it hit the ice patch, how long did it take to stop?

Solution:

The magnitude of force is equated to the product of the mass times the acceleration.

$$
F=-m a
$$

Thus, the acceleration is

$$
a=-\frac{F}{m}=\frac{-0.20}{30.0}=-0.0067 \mathrm{~m} / \mathrm{s}^{2}
$$

The kinematics equation is

$$
\begin{gathered}
a=\frac{v_{f}-v_{i}}{t} \\
v_{f}=0 \\
v_{i}=10.0 \times \frac{1000}{3600}=2.78 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Thus, time is

$$
t=\frac{-v_{i}}{a}=\frac{-2.78}{-0.0067}=414.9 \mathrm{~s}
$$

Answer: $t=414.9 \mathrm{~s}$.

