## Answer on Question 49113, Physics, Mechanics | Kinematics | Dynamics

## Question:

A rock thrown horizontally at $25 \mathrm{~m} / \mathrm{s}$ from a cliff that is 45 m high. How far from tag base of the cliff does the rock land?

## Solution:

First we find the time which rock takes to fall from the cliff on the land. Because the initial velocity of the rock along $y$-axis equals to zero, we can write:

$$
h=\frac{1}{2} g t^{2},
$$

where $h$ is the height of the cliff, $t$ is the time and $g$ is the acceleration of gravity. Therefore, from this formula we obtain the time:

$$
t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \cdot 45 m}{9.8 m / s^{2}}}=3.03 \mathrm{~s} .
$$

So, we can find how far from tag base of the cliff the rock land:

$$
d=v_{\text {rock }} t=25 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 3.03 \mathrm{~s}=75.75 \mathrm{~m} .
$$

## Answer:

The rock lands 75.75 meters far from tag base of the cliff.

