Answer on Question 49101, Physics, Mechanics | Kinematics | Dynamics

Question:

4. A steel ball of mass m is fastened to a light cord of length L and released when the cord is horizontal. At the bottom of its path, the ball strikes a hard plastic block of mass $\mathrm{M}=3 \mathrm{~m}$, initially at rest on a frictionless surface. The collision is elastic.
(a) Find the tension in the cord when the ball's height above its lowest position is $\mathrm{L} / 3$. Write your answer in terms of m and g .
(b) Find the speed of the block immediately after the collision.
(c) To what height h will the ball rebound after the collision?

Solution:

a) Let's draw a free-body diagram:

So, let's write the forces acting on the ball:

$$
F_{T}-m g \sin \alpha=F_{\text {centripetal }}=\frac{m v^{2}}{L} .
$$

We can see that we have two unknowns in this equation $m v^{2}$ and $\sin \alpha$.
Let's write the law of conservation of energy to find $m v^{2}$. Then we have:

$$
\begin{gathered}
K E_{i}+P E_{i}=K E_{f}+P E_{f}, \\
0+m g L=\frac{1}{2} m v^{2}+m g \frac{L}{3}
\end{gathered}
$$

$$
m v^{2}=\frac{4}{3} m g L .
$$

From the triangle in the free-body diagram we can see that $\sin \alpha=\frac{2}{3} L / L=\frac{2}{3}$.
So, after substituting $m v^{2}$ and $\sin \alpha$ into first equation we obtain:

$$
F_{T}=\frac{2}{3} m g+\frac{4}{3} m g=2 m g .
$$

b) First we find the velocity of the ball before it hits the block. Let's write the law of conservation of energy:

$$
\begin{gathered}
K E_{i}+P E_{i}=K E_{f}+P E_{f}, \\
0+m g L=\frac{1}{2} m v^{2}+0, \\
v=\sqrt{2 g L} .
\end{gathered}
$$

So, because we have elastic head-on collision and kinetic energy is conserved we can obtain the velocity of the block after collision:

$$
v_{2}^{\prime}=\frac{2 m_{1}}{m_{1}+M} v=\frac{2 m_{1}}{m_{1}+3 m_{1}} \sqrt{2 g L}=\frac{2 m_{1}}{4 m_{1}} \sqrt{2 g L}=\frac{1}{2} \sqrt{2 g L} .
$$

c) We can find h from the law of conservation of energy:

$$
\begin{gathered}
K E_{i}+P E_{i}=K E_{f}+P E_{f}, \\
\frac{1}{2} m v_{1}^{\prime 2}+0=0+m g h, \\
h=\frac{v_{1}^{\prime 2}}{2 g} .
\end{gathered}
$$

We can find the velocity of the ball after collision from the formula:

$$
v_{1}^{\prime}=\frac{m_{1}-M}{m_{1}+M} v_{1}=\frac{m_{1}-3 m_{1}}{m_{1}+3 m_{1}} \sqrt{2 g L}=-\frac{2 m_{1}}{4 m_{1}} \sqrt{2 g L}=-\frac{1}{2} \sqrt{2 g L} .
$$

After substituting v_{1}^{\prime} into the formula for h we obtain:

$$
h=\frac{\left(-\frac{1}{2} \sqrt{2 g L}\right)^{2}}{2 g}=\frac{\frac{1}{4} 2 g L}{2 g}=\frac{1}{4} L .
$$

Answer:

a) $F_{T}=2 m g$.
b) $v_{2}^{\prime}=\frac{1}{2} \sqrt{2 g L}$.
c) $h=\frac{1}{4} L$.

