Answer on Question \#49084, Physics, Mechanics | Kinematics | Dynamics

Question:

3. A solid disk of radius 0.50 m and a mass of 0.10 kg is moving with a linear or translational velocity of $5.00 \mathrm{~m} / \mathrm{s}$. Determine the disk's:
a. Translational kinetic energy.
b. Rotational kinetic energy if rotating while translating.

Solution:

a) From the formula for the translational kinetic energy we have:

$$
K E_{t}=\frac{1}{2} m v^{2}=0.5 \cdot 0.1 \mathrm{~kg} \cdot\left(5.0 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=1.25 \mathrm{~J} .
$$

b) By the definition of the rotational kinetic energy we have:

$$
K E_{\text {rot }}=\frac{1}{2} I \omega^{2},
$$

where I is the moment of inertia and ω is the angular velocity.
For the solid disk the moment of inertia is

$$
I=\frac{1}{2} m r^{2}=0.5 \cdot 0.1 \mathrm{~kg} \cdot(0.5 \mathrm{~m})^{2}=0.0125 \mathrm{~kg} \cdot \mathrm{~m}^{2} .
$$

From the relationship between angular and linear variables we know that $v=r \omega$. So, from this formula we can find angular velocity:

$$
\omega=\frac{v}{r}=\frac{5.0 \mathrm{~m} / \mathrm{s}}{0.5 \mathrm{~m}}=10 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

Then, substituting the moment of inertia and the angular velocity to the formula for the rotational kinetic energy we obtain:

$$
K E_{\text {rot }}=0.5 \cdot 0.0125 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(10 \frac{\mathrm{rad}}{\mathrm{~s}}\right)^{2}=0.625 \mathrm{~J}
$$

Answer:

a) $K E_{t}=1.25 \mathrm{~J}$
b) $K E_{\text {rot }}=0.625 \mathrm{~J}$

