Answer on Question 49077, Physics, Mechanics | Kinematics | Dynamics

Question:

1. A turntable is initially rotating at $1.50 \mathrm{rad} / \mathrm{s}$ and accelerates at $2.50 \mathrm{rad} / \mathrm{s}$ for 5.0 s .
a) Calculate the final angular velocity in rad/s
b) Compute the angular displacement during the 5.0 s in radians and revolutions

Solution:

a) By the definition of the angular acceleration we have:

$$
\alpha=\frac{\Delta \omega}{\Delta t}=\frac{\left(\omega_{f}-\omega_{i}\right)}{t},
$$

where ω_{i} is the initial angular velocity, ω_{f} is the final angular velocity and t is the time. So, from the formula for angular acceleration we can find the final angular velocity:

$$
\omega_{f}=\omega_{i}+\alpha t=1.50 \frac{\mathrm{rad}}{\mathrm{~s}}+2.50 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \cdot 5.0 \mathrm{~s}=14 \frac{\mathrm{rad}}{\mathrm{~s}} .
$$

b) By the definition of the angular displacement we have:

$$
\theta=\frac{1}{2} \alpha t^{2}+\omega_{i} t=0.5 \cdot 2.50 \frac{\mathrm{rad}}{\mathrm{~s}^{2}} \cdot(5.0 \mathrm{~s})^{2}+1.50 \frac{\mathrm{rad}}{\mathrm{~s}} \cdot 5.0 \mathrm{~s}=38.75 \mathrm{rad}=\frac{38.75 \mathrm{rad}}{2 \pi}=6.2 \mathrm{rev} .
$$

Answer:

a) The final angular velocity is $\omega_{f}=14 \frac{\mathrm{rad}}{\mathrm{s}}$.
b) The angular displacement is $\theta=38.75 \mathrm{rad}$ or $\theta=6.2 \mathrm{rev}$.

